Ultrafast multidimensional Laplace NMR for a rapid and sensitive chemical analysis

نویسندگان

  • Susanna Ahola
  • Vladimir V Zhivonitko
  • Otto Mankinen
  • Guannan Zhang
  • Anu M. Kantola
  • Hsueh-Ying Chen
  • Christian Hilty
  • Igor V. Koptyug
  • Ville-Veikko Telkki
چکیده

Traditional nuclear magnetic resonance (NMR) spectroscopy relies on the versatile chemical information conveyed by spectra. To complement conventional NMR, Laplace NMR explores diffusion and relaxation phenomena to reveal details on molecular motions. Under a broad concept of ultrafast multidimensional Laplace NMR, here we introduce an ultrafast diffusion-relaxation correlation experiment enhancing the resolution and information content of corresponding 1D experiments as well as reducing the experiment time by one to two orders of magnitude or more as compared with its conventional 2D counterpart. We demonstrate that the method allows one to distinguish identical molecules in different physical environments and provides chemical resolution missing in NMR spectra. Although the sensitivity of the new method is reduced due to spatial encoding, the single-scan approach enables one to use hyperpolarized substances to boost the sensitivity by several orders of magnitude, significantly enhancing the overall sensitivity of multidimensional Laplace NMR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrafast Multidimensional Laplace NMR Using a Single-Sided Magnet.

Laplace NMR (LNMR) consists of relaxation and diffusion measurements providing detailed information about molecular motion and interaction. Here we demonstrate that ultrafast single- and multidimensional LNMR experiments, based on spatial encoding, are viable with low-field, single-sided magnets with an inhomogeneous magnetic field. This approach shortens the experiment time by one to two order...

متن کامل

Spatial/spectral encoding of the spin interactions in ultrafast multidimensional NMR.

Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy provides the means to extract diverse physical, chemical, and biological information at an atomic level. Conventional sampling schemes, however, may result in relatively long 2D experiments; this has stimulated the search for alternative, rapid acquisition schemes. Among the strategies that have been recently proposed for achievin...

متن کامل

An improved ultrafast 2D NMR experiment: towards atom-resolved real-time studies of protein kinetics at multi-Hz rates.

Multidimensional NMR spectroscopy is a well-established technique for the characterization of structure and fast-time-scale dynamics of highly populated ground states of biological macromolecules. The investigation of short-lived excited states that are important for molecular folding, misfolding and function, however, remains a challenge for modern biomolecular NMR techniques. Off-equilibrium ...

متن کامل

Ultrafast two-dimensional NMR spectroscopy using constant acquisition gradients.

Multidimensional NMR spectroscopy plays an important role in the characterization of molecular structure and dynamics. A new methodology for acquiring this kind of spectra has been recently demonstrated, endowed with the potential to compress arbitrary multidimensional NMR acquisitions into a single scan. This "ultrafast" nD acquisition protocol is based on a spatiotemporal encoding of the indi...

متن کامل

Recent Fourier and Laplace perspectives for multidimensional NMR in porous media.

Multidimensional NMR techniques used in the measurement of molecular displacements, whether by diffusion or advection, and in the measurement of nuclear spin relaxation times are categorised. Fourier-Fourier, Fourier-Laplace and Laplace-Laplace methods are identified, and recent developments discussed in terms of the separation, correlation and exchange perspective of multidimensional NMR spect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015